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I t  is shown that the complete structure of a non-centrosymmetric crystal can be determined from 
the X-ray diffraction data obtained from the members of an isomorphous series in which two dif- 
ferent parts of the structure can be varied independently. The structure so determined may be an 
enantiomorph of the true structure. 

1. Introduction 

Two crystals are said to be isomorphous if they  have 
essentially the same structures, but  are composed of 
chemically different atoms. (This includes the case of 
additional atoms, since these can be thought  of as 
replacing vacancies, i.e. atoms of zero atomic number.) 
Examples of isomorphism are very common: KMnO 4 
and BaS04, AgaAsSa and AgaSbS a, benzene hexa- 
chloride and benzene hexabromide, te t raphenyl  t in 
and te traphenyl  lead, etc. I t  often happens tha t  the 
several hydrohalides of a complicated organic amine, 
or the various alkali metal salts of an organic acid, 
form series of isomorphous crystals. I t  has recently 
been discovered tha t  certain proteins can crystallize in 
apparently identical fashion either with or without 
the substitution of mercury or silver atoms for the 
hydrogen of sulfhydryl groups, or with or without dye 
molecules bound to the protein molecules; these are 
also examples of isomorphism. The existence of such 
isomorphous pairs or series often greatly facilitates 
the determination of the structure of these crystals 
by X-ray diffraction mhthods. 

A good account of how isomorphous replacement 
methods have been used for determining the structures 
of crystals is given in the new book by Lipson & 
Cochran (1953). These methods have been applied in 
the past  with great success to centrosymmetrie crys- 
tals. 

I t  is often important  to find the structure of a 
complicated organic molecule containing dozens, or 
even hundreds, of light atoms. This can be done when 
a crystal containing this molecule is capable of forming 
two different isomorphous series by the addition or 
substitution of heavy atoms in two different sets of 
positions in the unit cell. For example, suppose tha t  
a certain complicated sugar forms a set of isomorphous 
crystalline addition compounds with the alkali halides 
NaC1, NaBr and KC1. The intensities of the X-rays 
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diffracted by these three crystals can be used to define 
completely the structure of the sugar, as will be shown 
below, provided only tha t  the arrangements of the 
alkali and halide atoms are sufficiently simple tha t  
their positions can be determined easily (see, however, 
the discussion in § 3). This lat ter  problem, tha t  of 
finding the positions of the heavy atoms, is usually 
soluble by  the use of Pat terson functions or related 
methods; in the discussion to follow, it  is assumed 
tha t  the arrangements of the heavy atoms have been 
found, and tha t  the question of interest concerns the 
nature of the complicated arrangements of the light 
atoms in the crystal. 

Bokhoven, Schoone & Bijvoet (1951; see especially 
the first full paragraph on p. 279) have outlined very 
briefly the method of double isomorphous replacement 
which is the subject of the present paper. They did 
not, however, mention the difficulties connected with 
the choice of origin and enantiomorphism, which are 
discussed at  some length below in § 5. The resolution of 
these ambiguities is imperative for the solution of a 
non-centrosymmetric structure. The detailed develop- 
ment  of the entire method has therefore been under- 
taken here. 

2. Statement  and solution of the problem 

The structure factors, F(hkl), of a crystal depend 
on the natures and positions of the atoms in one unit 
cell of the crystal according to the formula: 

AT 
.F(hkl) = ,.~, fj(hkl) exp 2~i(hxj+kyj+Izj) , (1) 

j=l  

where the various symbols have their usual meanings. 
The sum on the right of (1) can be conveniently 
divided into terms corresponding to the atoms which 
do not change from one isomorphous crystal to an- 
other and other terms which correspond to atoms which 
do change. Call the constant par t  of the structure 0 
and the variable par t  of the structure X. Then 

Fo+x = F o + F x .  (2) 

1 
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The indices h, k and 1 have been omitted here, since 
no confusion is possible, and the subscripts indicate 
the parts of the structure to which each term cor- 
responds. Inasmuch as F(hkl) is, in general, a complex 
number, equation (2) is a vector equation in the 
complex plane, and can be represented by a diagram 
such as :Fig. 1. 

# 
Imaginary 

part 

Real part--," 

Fig.  1. Vec to r  add i t ion  of the  s t ruc tu re  fac tors  of the  
invar iab le  and  var iab le  pa r t s  of a c rys ta l  s t ruc tu re .  

I t  is assumed in what follows tha t  the experimental 
quantities lF(hkl)[ are known for the various members 
of the isomorphous series. For definiteness, assume 
that ,  for each h, k, l, the magnitudes 12,o[, [Fo+xl and 
]2,0+M[ a r e  known, where X and M refer to two 
different isomorphous additions to the structure O. 
Assume also tha t  the structures X and M have been 
found, and tha t  the complex numbers 2,x and 2,M 
have been computed from them for each h, k, 1. The 
problem is to find the complex numbers 2,o(hkl) from 
which the structure 0 can be computed directly by 
Fourier methods. 

The solution for 2,0 is easily obtained graphically; 
the procedure is illustrated in Fig. 2. Vectors - F x  

x 

% \ 

rx--- l / 
~ R e a l  part--* 

I 

Fig.  2. Solut ion of the  v e c t o r  equa t ions  for  2'o f rom 
a knowledge  of [FO[, ]FO+M[, ]FO+X[, FM and  Fx. 

and --2,M a r e  drawn from the origin of the complex 
plane, and a circle (marked O) with radius equal to 
12,ol is described about the origin as center, a circle 
(marked X) of radius 12,o+xl is centered at  the end of 
the vector - F x  and another circle (marked M) of 
radius 12,0+M] is centered at  the end of vector --FM. 

The three circles intersect at  a point which is the end 
of vector 2,0. I t  is to be noted tha t  a knowledge of 
2,x, ]Fo[ and [2,o+x[ alone gives two solutions for 2,0, 
one for each of the two intersections of circles 0 and X;  
similarly, there are two solutions for 2,0 obtainable 
from a knowledge of 2,M, [Fo] and [FO+M[ alone, 
corresponding to the two intersections of circles 0 
and M. The correct solution for Fo is the one common 
to these pairs of solutions, i.e. the one corresponding 
to the point where all three circles 0, M and X inter- 
sect. 

Analytically, each complex number 2, can be writ ten 
2' = A +lB. The known data  are [Fo[ 2 = Ao+Bo,2 e 

= A 2 ~ B  2 [2,0+x] 2 o+xT o+x, [2,0+M[ ~ = A~+M+B20+M, 
F x  = A x + i B x  and 2,M = AM+iBM. We wish to find 
Ao and Bo. Now, 

[2,0+x[ ~ = (Ao+Ax)2 +(Bo+Bx) 2 
2 2 2 2 = A o + B o + A x + B x + 2 A o A x + 2 B o B x  

o r  

12,o+xl ~. = 12,ol~+lFxl~+2AoAx+2BoBx . 

This gives : 

P x  = [Fo+x] 2-12,.r.I 2-1FO[ 2 = 2AxAo+2BxBo  • (3) 

Similarly, 

PM = 12,0+M[ 2-[FM] 2-[Fo[ 2 = 2AMAo+2BMBo " (4) 

All the quantities in (3) and (4) are known, except 
Ao and Bo; consequently these two equations can be 
solved simultaneously, as follows: 

Let 
A = 4 ( A z B M - A M B x ) ,  

then 

2 1 P x  B x  I and B o 2 l A x  P x  I 
A o = ~  PM BM ='A AM PM " (5) 

:From the values of A o and B o obtained by  means of 
(5) it is possible to write immediately F o = Ao+iBo. 

The analytical method just  outlined corresponds to 
locating the end of the vector Fo from a knowledge 
of its projections on the directions of the two vectors 
F M and Fx. The geometry is thus quite different from 
tha t  of the most convenient graphical method, and 
the effect of experimental errors in the intensity 
measurements will not be the same. The analytical 
method always gives a unique determination of A o 
and Bo (except when 2,M and 2,x are parallel), while 
the graphical method may  not, since there may  be 
no point at  which the three circles 0, M and X inter- 
sect. If the graphical method fails in this way, the 
best position for the end of the vector 2,0 would be 
in the center of the small curved triangle where the 
three circles nearly intersect; an averaging of errors 
is also required in the analytic method, because 

2 2 Ao+B o may differ from the observed value of IFol 9, 
but the averaging is different, 
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3. S i tuat ions  to be avoided 

I t  is easy to see that, if F ~  and F x  are parallel or anti- 
parallel (i.e. collinear in Fig. 2), there will be two 
points where the three circles 0, M and X intersect, 
corresponding to two solutions for Fo. In this case the 
analytical method just described fails to give a unique 
solution for 2'0, since A = 0. This situation may occur 
occasionally in any one isomorphous series for special 
values of h, k, l, but such a sporadic ambiguity usually 
does not seriously hamper a structure determination. 
If, on the other hand, FM and EL are systematically 
collinear, no structure determination by this method 
is possible for a non-centrosymmetric crystal. For 
instance, this last is true for every h, k, l, if structures 
M and X are both centrosymmetric about the same 
point in structure 0, or centrosymmetric about points 
which differ in coordinates by integral numbers of 
halves; and there are several other special situations 
which make FM and Fo collinear for a hopelessly large 
proportion of the h, k, l, combinations. Such situations 
cannot occur if one of the structures M or X is non- 
centrosymmetric, or if they are both centrosymmetrie, 
but about points which differ in coordinates by 
irrational numbers. Thus, in the case of the series of 
alkali halide-sugar addition compounds mentioned in 
§ 1, if each unit cell contains only one alkali metal 
atom and one halogen atom, the coordinates of these 
must differ by irrational numbers, in order to make the 
structure determination possible, since single atoms 
are always centrosymmetric. (Of course, if the crystal 
is eentrosymmetric--a case not under consideration 
here---the structure determination is usually possible, 
even though FM and F x  are required by symmetry 
to be colllnear.) 

4. So lut ion  of a hypothet ica l  s tructure  

These methods were applied to a hypothetical one- 
dimensional structure consisting of point atoms, of 
unit scattering power for X-rays, arranged along a line. 
All atomic coordinates are multiples of one-twelfth of 
the period, so that  the F ' s  are periodic functions of 
the order of 'reflection', h, with a period of twelve, 
and the relationship F(h) = F*(12n-h)  holds, where 
the asterisk indicates the complex conjugate and n 
is an integer. I t  is therefore only necessary to study 
the first six orders of reflection. The structure 0 was 
taken to consist of six atoms, while the two different 
structures M and X were each taken to have three 
atoms. None of these structures has a center of sym- 
metry. The atomic coordinates appear in Table 1, and 
the various values of F,  IF[ and [F[ 9, together with 
the phase angle ~, from F = IF[ exp (ic~), are pre- 
sented in Table 2. 

A test of the graphical method is illustrated in 
Fig. 3. For each order of reflection h, two diagrams 
appear in the figure; one shows the determination of 
the two solutions for F o found by the use of 2'M, 

Table 1. Coordinates of unit point atoms in hypothetical 
test structures 

St ruc tu re  O : 

A toms  a t  x ---- ~1~, ~ ,  ~ ,  ~ , 1  o l-z, ~-~ 

FO (h) = 2 cos 2~ -t- 2 cos 2~ -~+ (i)h+ (-- 1) h exp 2~i 

S t ruc tu re  M :  

Atoms  at  x = 0, ~ ,  

/ ~ z / ( h ) =  l+ (--1)hexp (--2zti h )  +exp (--2zti h) 

St ruc tu re  X :  

Atoms  a t  x ---- ~ ,  1-~, 

••(h) = exp (2~ti h)  +(--1)h+(--i) h 

St ruc tu re  O + M :  

A toms  a t  posit ions of s t ruc tu res  0 and  M 

.FO4 .~ (h) = FO (h) +.FM (h) 

St ruc tu re  0 A- X :  

A toms  a t  posit ions of s t ruc tures  0 and  X 

FO+.x.(h) -= Fo(h)+Fz (h) 

I.FO+M[ and [Fo[, the other shows the two solutions 
found by the use of X, instead of M. Comparing these 
two diagrams, it is always found that  one solution 
for Fo is common to both and has the same phase 
angle ~ as appears in Table 2. I t  is easy to carry out 
the computations of the analytical method and to 
show that  it, too, gives the values of F o in Table 2. 

5. A m b i g u i t i e s  and their  r e m o v a l  

In an actual application of this method of double iso- 
morphous replacement, some complications arise which 
have not yet been mentioned and which have to do 
with the indeterminacy of the origin to which a struc- 
ture is referred and with the near impossibility of 
distinguishing between two enantiomorphs by X-ray 
diffraction. These difficulties will be discussed using 
the structures 0, M and X of Table 1. Structure M, 
for instance, must be discovered by comparing the 
Patterson functions of structures 0 and O+M,  since 
a crystal of structure M alone cannot exist. This 
process results in a knowledge of the interatomic vec- 
tors in M, and from this it is usually possible to find 
the relative positions of its atoms, except that  either 
enantiomorph will have the same interatomic vectors 
and that  any origin can be used. Thus, starting from 
the values of IFo[ ~ and IFo+MI 2 of Table 2, it could 
be found that  structure M consists of three atom.~ in 
a row, the two end ones being, respectively, 3/12 and 
4/12 of the period from the middle one, but there 
would be no way to tell which end should be in the 
direction of increasing X. (This description of structure 
M corresponds to choosing the origin at x = 8/12 and 
using the atoms at x = 5/12, 8/12 and 1 in the descrip- 
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Table  2. Values of F, IF[, IF[ ~ and o¢ for the structures O, M, X ,  O + M  and O + X  of Table 1 
(F = [Fleia = A-{-iB) 

h 0 1 2 3 4 5 6 
Fo(h) 6 ½(2+ }/3) ~- ½i --  ½-~- ½}/3i - - 2 - - 2 i  --~}+ ½}/3 ½(2-- }/3)+ ½i - -2  
o¢o(h) (°) 0 15 120 225 150 75 180 
I F o  (h)] 6 ½ }/2 ( }/3 + 1) 1 2 }/2 }/3 ½ }/2 ( }/3 -- 1) 2 
IFo(h)[ ~ 36 2 +  }/3 1 8 3 2--  }/3 4 

_~(h) 3 -½(}/3-1)-½(V3-1)i l 2 + i  -V3i ½(V3+l)+½(V3+l)i 1 
toM(h) (°) 0 225 0 26-56 270 45 0 
],FM(h)[ 3 ½}/2(}/3-- 1) 1 V5 }/3 ½}/2(3+ 1) 1 
IFM(h)I ~- 9 2--  }/3 1 5 3 2 +  }/3 1 

--~z-- ½(2+ }/3)i 1 Fx(h)  3 - - ~ - -  ½(2-- }/3)i --½--½}/3i i ~ +  ½}/3i a 
ax(h)  (°) 0 185.11 240 90 30 231-21 0 
[Fx(h)] 3 }/(4-- }/3) 1 1 }/3 }/(4+ }/3) 1 
t.F x(h)l 2 9 4--  }/3 1 1 3 4 +  }/3 1 

FO+M(h) 9 ~vr ½(2-- }/3)i 1 +  ½}/3i - - i  - - ~ - -  ½}/3i ~}~- ½(2+ }/3)/ --  1 
aO+M(h) (°) 0 5.11 60 270 210 51-21 180 
]Fo+M(h)] 9 }/(4-- }/3) 1 1 V3 }/(4+ }/3) 1 
I.Fo+M(h)[ 2 81 4--  }/3 1 1 3 4 +  }/3 1 

.Fo+x(h ) 9 ½(}/3-- 1)-~- ½(V3-- 1)i --1 - - 2 - - i  }/3i --  ½(}/3+ 1)-- ½(}/3-{- 1)i --1 
ao+x(h) (o) 0 45 180 206.56 90 225 180 
IFo+x (h ) l 9 ½ }/2 ( }/3 -- 1) 1 }/5 }/3 ½ }/2 ( }/3 ~- 1) 1 
IFo+x(h)[2 81 2--  }/3 1 5 3 2 +  V3 1 

Table 3. Values of F, o¢, F and F* for structures M'  and X '  

h 0 1 2 3 4 5 6 
.FM,(h) 3 ½ ~- ½(2-- }/3)i -- ½-}- ½}/3i 2 - - i  :~--- ½ ~/3i ½~- ½(2~- }/3)i 1 
aM'(h) (o) 0 15 120 333.44 330 75 0 
I.FM,(h) I 3 ½ }/2( }/3 -- 1) 1 }/5 }/3 ½ }/2( }/3 + 1) 1 
[FM,(h)l 2 9 • 2- -  }/3 1 5 3 2-}- }/3 1 

Fx,(h)  3 ~-~- ½(2-- }/3)i --½--½}/3i - - i  ~-~- ½}/3i ~ -  ½(2-~ }/3)i 1 
ax,(h) (°) 0 5.11 240 270 30 51.21 0 
IFx,(h)[ 3 }/(4-- }/3) 1 1 }/3 }/(4-~- }/3) 1 
[Fx,(h)]" 9 4--  }/3 1 1 3 4-}- }/3 1 

½ion of Table 1, with x increasing either to the  r ight  or 
left.) I t  might  well be decided to use the  coordinates 
x = 0, 3/12, 8/12 for the  atoms in M,  and  this would 
be a 'correct '  s t ructure determinat ion,  as this  phrase 
is usual ly  used;  this  s tructure will be called M'. In  
a similar  way, s tructure X might  be 'correctly '  de- 
te rmined to have atoms at  x = 0, 3/12, 10/12; this  
s tructure will be called X'.  I t  will be noted tha t  struc- 
ture M '  is the enant iomorph of M, while s tructure X '  
is congruent to X ;  also t ha t  the  origins of M '  and  X '  
are not  properly chosen with respect to one another.  
The values  of F ,  c~, IFI and  [FI ~ for structures M '  and  
X '  appear  in  Table 3. (IF[ and IFl" are, of course, 

the same as in Table 2.) 
Since structures M '  and  X '  are referred to different 

origins and  correspond to different  enant iomorphs,  
the  solution for F o cannot  be obtained direct ly from 
the  values of F M, and Fz.  by  the use of the  methods  
previously described. However, as will be shown, it  is 
possible to extend these methods  so as to obta in  a 
'correct '  set of values for F o, in the  sense tha t  these 
values will correspond to structure 0 or its enantio- 
morph  and tha t  s tructure 0 m a y  be referred to a 
different  origin from tha t  in the original description. 

First ,  consider the  effect on the  values of F(hkl) 
caused by  changing the  origin to which the  crystal  
s tructure is referred. Suppose the new origin has co- 
ordinates x 0, Y0, z0 in the original coordinate system, 
and  let F'(hkl) be the  value of F(hkl) when the new 
origin is used. 

If  the complex number  F(hkl) is wri t ten in the  form 
F = IF[ exp (i~), then  the  value of F'(hkl) is 

F' (hkl) = [F(hkl)] exp i [~ (hkl) - 2xt (hx o + ky o + lz o)] . (6) 

This is the same as saying tha t  the magni tudes  of the 
F ' s  are not  changed by  a change of origin, bu t  the  
phase angles ~ (expressed in radians) are reduced by 
2xe(hxo+kyo+lzo). For a one-dimensional  structure,  
the reduction in c~ is 2~hx o. 

Second, the effect of changing from a structure to its 
enant iomorph is most  easily expressed by  changing 
all  coordinates x# yi, zj into negatives:  -x~, - y j ,  - z j .  
This clearly changes each F into F* and therefore 
changes a into - ~ .  

Let  us now a t t empt  to f ind the 'correct '  values  of 
Fo for the hypothet ica l  one-dimensional s tructure of 
Table 1, s tar t ing with the measured values of IFo], 
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Fig. 3. Test of the double isomorphous replacement method of phase determination. 

IFo+~l, IFo+zl and  the  values of FM, and  Ex, found 
arb i t ra r i ly  and  listed in Table 3; we shall keep in 
mind, however,  t h a t  s t ructures  M' and  X '  m a y  be 

referred to different  origh~, and  m a y  correspond to 
different  enant iomorphs .  

The first  s tep is to  find the  two values of O¢o(h) 
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Table  4. Values  o f  O¢o f o u n d  f r o m  I~oI, I~o÷~1 and  $'M" and  f r o m  IFo[, IFo+xl and  Fx ' .  

(All values of o¢ are in degrees) 

(a) 
h 0 1 2 3 4 5 6 

[aO--aMl 0 150 120 198.44 240 30 180 
OCM" 0 15 120 333"44 330 75 0 
aM'q-lOcO--OCM'l = aD 0 165 240 171.88 210 105 180 
aM,~Io~O~O¢M,I = 0 ~  t 0 225 0 135 90 45 180 

(b) 
1 o¢o -- axl 0 189.89 240 135 120 203.79 180 
cox" 0 5.11 240 270 30 51.21 0 
o~x~lo~o--~xx, I = a~ t' 0 195 120 45 150 255 180 
c~x'~[ao--o~,l = ai~ 0 175.22 0 135 270 207.42 180 

(c) 
! t i t  ao--v¢o 0 330 120 126.88 60 210 0 

~ - - a ~ )  v 0 349.78 240 36.88 300 257.58 0 
t r  t i t  

~ o  - -  o~o 0 30 240 90 300 150 0 
o¢~'-- o~ v 0 49-78 0 0 180 197.58 0 

(d) 
t t r t  a o + a o  0 0 0 216.88 0 0 0 

~b Jr ocb v 0 340.22 240 306.88 120 312-42 0 
a~' q- a~)" 0 60 120 180 240 300 0 
a~)' q- a~  0 40.22 0 270 0 252-42 0 

(e) 
Fx,,,(h) 3 ½~/3+ ½(2V3-- 1)i --½--½V3i -- i  --~-- }V3i -- ½V3-½(2V3+ 1)i 1 
cox,,, 0 54-89 240 270 210 248.79 0 
laO--ax"'] 0 189.89 240 135 120 203.79 180 
ax,,,+l~O--ax,,,I = ab. 0 244.78 120 45 330 42.58 180 
a x  . . . .  Io¢o-ocx,,I = a~  0 225 0 135 90 45 180 

t h a t  cor respond to  each  c o m b i n a t i o n  I$'o[, IFO+M], 
FM, a n d  12%1, IFo÷xl, Fx,. This  can be done  e i ther  
g raph ica l ly ,  as in :Fig. 3, or ana ly t i ca l ly .  I t  is easi ly  
shown  t h a t :  

1 
cos(~o--~xM) 21_%1 IF~I[IF°+MI~--IF~I~--I$'°I~]' ( 7 )  

where  ~o a n d  C~M are t he  phase  angles of F o and  F M, 
respec t ive ly .  F r o m  (7), t he  m a g n i t u d e  of C~o-Cq~ can  
be found ,  b u t  n o t  i ts  s ign;  if aM is known,  th is  gives 
two  values  of C~o--the same two  values  to  be found  
b y  t he  g raph ica l  me thod .  F o r m u l a  (7) appl ies  equa l ly  
well, of course, if M is eve rywhere  repIaced by  X.  
Tab le  4 presents  t he  resul ts  of ca lcu la t ions  based  on  
th is  me thod .  

I n  Tab le  4 (a), t h e  f i rs t  row lists t he  values  of 
I~o--~M'l for  each h f rom 0 to  6; t he  second row lists 

the values of ~M, from Table 3, and the third and 
t t t  

f o u r t h  rows l ist  the  va lues  of ~o a n d  ao  which  are  the  
two  values  of C~o compa t ib l e  w i th  t he  values  of 
IFO+M,I 9", IFol ~" a n d  FM, used. Tab le  4 (b) presents  
t he  cor responding  resul ts  ob t a ined  f rom X ' ;  t he  las t  
two  rows are called a~" and  c~ ~. A compar i son  a t  each  

t t !  t i t  

h, of t he  va lues  of c~ o and  C~o wi th  those  of C¢o and  
c~ ~ reveals  no  cons i s ten t  correspondence.  I t  is pos- 
sible, however ,  t h a t  these  values  of ao  are referred to  
d i f fe rent  origins. ( In fact ,  th is  is k n o w n  to  be t rue,  
f r om the  way  the  d a t a  were ob t a ined  in th is  case.) 

I f  th i s  is so, t he  differences be tween  t he  C~o'S o b t a i n e d  
f rom the  M '  s t ruc tu re  and  those  o b t a i n e d  f rom t h e  X '  
s t ruc tu re  should  be of ~he form hfl (where fl = 2 ~ x  o 
expressed in degrees and  x 0 is t he  shi f t  in  or igin be- 
tween  s t ruc tu res  M '  a n d  X' ) .  Tab le  4 (c) presents  all  
these  differences,  t he  four  rows being, r espec t ive ly :  

t l i t  l " t t  l i t  t l  iv 
a o -  O¢o , O~o- o¢~, o¢ o - c~ o a n d  C~o - C~o. I t  is seen t h a t  
i t  is impossible  to f ind  a va lue  of fl which  will m a k e  a 
va lue  of the  dif ference in  each co lumn equa l  to  hfl. 
I t  is sti l l  possible,  however ,  t h a t  n o t  on ly  are  M '  a n d  
X '  referred to  d i f ferent  origins b u t  also cor respond  to  
d i f fe rent  enan t iomorphs .  I f  th i s  is so (and we k n o w  i t  
is), all  the  values  of C~o f rom e i ther  t he  M '  or t he  X '  
d a t a  should  be changed  in  sign, before t a k i n g  t he  dif- 
ferences of Tab le  4 (c). I n  o the r  words,  i n s t ead  of 
differences,  sums should  be t a k e n ;  these  sums appea r  
in  Tab le  4 (d), t he  four  rows corresponding,  respec- 

t t t r  , v t  ~ a c , i v  t t  t t t  , t t ~  i V  tively, to ~0+~0, ~0T~0, ~0+s0 and ~0T~0' 
I t  is seen a t  once t h a t  c h o o s i n g / / =  6r) ° expresses all  
t he  values  in the  t h i r d  row in  t he  f¢ cm hfl. (These 
n u m b e r s  need  no t  all  h a v e  been  in the  t h i r d  row, 
b u t  m igh t  have  var ied  f rom one row to  a n o t h e r ;  t h a t  
t h e y  are in one row is for tu i tous . )  This  obse rva t ion  
proves  t h a t  s t ruc tu res  M '  a n d  X '  cor respond to  
e n a n t i o m o r p h s  of s t ruc tu re  O, and  t h a t  t he  origins 
were t a k e n  60/360 apar t ,  i.e. x o = 2/12. 

I n  order  to  refer  s t ruc tu res  M '  a n d  X '  to  t he  same  
origin and  have  t h e m  correspond to  the  same enan t io -  
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morph of O, one of them must be changed to its mirror 
image and the origin of one of them moved by two- 
twelfths of the period. I t  is assumed that  this treat- 
ment is to be given to X'. X'  has atoms at x = 0, 
3/12, 10/12; changing these to their negatives gives 
X" ,  the enantiomorph of X',  with atoms at x = 0, 
2/12, 9/12, X"  is still not referred to the same origin 
as M' ;  to accomplish this, each atomic coordinate in 
X "  must be increased by 2/12 to give structure X'" ,  
with atoms at x = 2/12, 4/12, 11/12. The values of 
Fx,,,, ~x"' and the corresponding two values of ~o 
(called ~ and ~i)  are set forth in Table 4 (e). 

I t  is seen at  once that  there is a perfect corre- 
spondence at each value of h between ao', obtained 
(Table 4 (a)) from /Eel, [FO+M[ and .FM,, and s~, 
(Table 4 (e)) obtained from ]Fo], ]Fo+x] and .F x .... 
Thus, structures M'  and X ' "  are referred to the same 
origin, and correspond to the same enantiomorph 
of O. The values of ao' (or, what is the same thing, 
s~) are a self-consistent set of phase angles for the 
structure factors, Fo, of structure O. If angles So', 
from Table 4 (a), are compared with the original phase 
angles So, from Table 2, it is found that  ao'(h ) -- 
- so(h)+240°h ,  which means that  structure O, as 
found 'correctly' from the data, is the enantiomorph 
of the true structure and is referred to an origin 8/12 
of the period from that  in the original description. 
This, however, is all that  can be expected from a 
structure determination using X-ray diffraction data. 

6. General izat ion to three d i m e n s i o n s  

The procedure just described is easily generalized to 
three dimensions. In general, structures M'  and X',  
as found from the intensities of the X-rays diffracted 
by crystals with the structures O, O + M  and O+X,  
will be referred to different origins and are as likely 
as not to correspond to different enantiomorphs. The 
two different origins will be separated by a vector in 
the crystal which has components x0, Y0 and z 0 and the 
differehces or sums corresponding to the entries in 
Tables 4 (c) or 4 (d) will be of the form 2~(hxo+kyo+lzo) 
when structures M' and X'  refer to the same enantio- 
morph of O. In consequence of this, a sequence of 
reflections such as (0/c/), (I/c/), (2/c/),..., etc. can be 
used to find x 0 alone, since, for these, the entries will 
be of the form hfl+A, where fl is 2zx  o and A is 
2g(/cy 0 +lz0), both expressed in degrees. I t  is interesting 
- - and  advantageous--that  this process can be carried 
through for each combination of/c and l, thus providing 
a multitude of checks on the value of x 0. Simultane- 
ously, it will be discovered whether or not structures 
M'  and X'  correspond to enantiomorphs of O, and, 
if they do, one of them can be changed into its mirror 
image. In a similar way, the sequences (hO1), (hl/), 
(h2/), . . . ,  etc., and (hkO), (h/cl), (hk2), . . . ,  etc., can 
be used to find Y0 and z0, respectively. Of course, the 
phases of the various Fo'S are found simultaneously. 
Once M'  and X'  are properly located and referred to 

the same enantiomorph of O, all the phases of the 
F ' s  can be found. With this knowledge, it is then pos- 
sible to compute directly the Fourier series for the 
electron density of structure O. 

7. A m o r e  general  t rea tment  

The method for phase determination described in the 
preceding paragraphs has been based on the isomer- 
phons replacement of vacancies in structure 0 by the 
atoms of structures M or X. This type of situation is 
rare in nature: in the more usual case, one kind of 
atom replaces another. Thus, one would usually be 
faced with a set of crystals with structures such as 
this: O + M ÷ X ,  O + M ' + X ,  O + M + X '  and, perhaps, 
O ÷ M ' ÷ X ' ,  where structures M and M' are the same, 
except that  they are composed of different atoms, and 
similarly for X and X'.  Consider the pair of structures 
O ÷ M ÷ X  and O + M + X ' .  If we suppose, as is usually 
true in practice, that  all the atoms in X are of the 
same kind (for instance, chlorine atoms) and that  the 
same holds for X',  but with a different kind of atoms 
(for instance, bromine atoms), then we have that  

.F x, = ( f z , / f z }Fx  (8) 
and 

F z ' - F x  = ( ( f z , - - f z ) / f x )Fx  (9) 

for each (h/cl). Thus we can write 

/W'0+M+ x, = .Fo+ M+ X ÷ .F x.,_ X . (10) 

In most cases, the values of Fx,_x can be found directly 
by comparing the Patterson functions of structures 
O + M + X  and O + M + X ' ,  and, from these, working 
out the structure X ' - X .  This structure can be con- 
sidered as substituted for a set of vacancies in structure 
O + M + X .  Now, by using the experimentally deter- 
mined values of J.Fo+M+Xl ~', IFO+M+X,I 9" and Fx,_z,  
two solutions can be found for Fo+~+ z. (This is done 
in the same way that  two solutions are found for .F o 
from the measured values of [.FoJe, [Fo+z[ e and Fz,  
as described previously.) 

By using a parallel procedure, starting with the 
data obtained from structures O + M + X  and 
O + M ' + X ,  two independent solutions can be found 
for JFO+M+X, from [FO+M,+X[ 2, [FO+M+X[ 2 and F~,_M. 
If a common solution occurs in each pair, FM,_ M and 
Fx,_ x are referred to the same origin and correspond 
to the same enantiomorph, ff not, then a 'correct' 
origin and enantiomorph can be found by the methods 
outlined in previous paragraphs, and the values of 
-~M'--M, FX'--X and Fo+~s+x can all be referred to 
this origin and enantiomorph. Now, using 

F x  = { f x / f x ' - x )Fx ' - x  and 

~ = { fM/f~ ,_~}F~,_~,  (11) 

we can find F o from the relation 

Eo = FO+M+X-FM--Fx,  (12) 
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and, from this, structure 0 can be found by summing in the series. This criterion reduces to that  of the last 
a Fourier series, paragraph under the special assumptions stated there. 

8. The effect of variations from exact i s o m o r p h i s m  

I t  has been assumed in the foregoing discussion that  
the lattice constants and atomic parameters of the 
crystals in an isomorphous series are all exactly alike; 
this state of affairs is not likely to be found in nature, 
although it is sometimes closely approximated. The 
question then arises: how far can two crystals differ 
from iSomorphism without seriously vitiating the 
method of determining phases just described? 

In order to make this question definite, let us as- 
sume that  structure 0 is a complicated organic mole- 
cule which maintains its dimensions and orientation 
with respect to the crystal axes, and that  the effect 
of adding structures M or X is only to increase the 
lengths of the crystal axes. For convenience, we choose 
the origin at the centroid of scattering of structure 0 
and assume that  the greatest possible value of lx[, lY[ 
or Izl for an atom of 0 is 0.5. Let us suppose that  there 
are two equal atoms in O, with x coordinates +0.5 
and -0 .5 ,  respectively, when the lattice constants 
a 0, b 0 and c o of the crystal are at a minimum. As the 
lattice constants increase, by fractional amounts c~, fl 
and ?, respectively, these x coordinates decrease by 
the fractional amount c~ (to a sufficient approxima- 
tion). The contribution of these two atoms to the 
structure factors of the h00 reflections of the crystal 
is given by 

2f  cos 2~h. ½(1-c~) = 2f  ( -  1)h cos ~hc~. 

This contribution never changes by more than 15% 
of its maximum range as hc~ changes by 0-1. All other 
pairs of atoms in structure 0 contribute smaller changes 
to these structure factors. I t  seems reasonable to say 
that  crystals will behave as isomorphous for purposes 
of phase determination if the change from one member 
of the series to another in the contribution of any atom 
to ]Fol is less than 15% of its maximum contribution; 
consequently, hc¢ (also k~ and l~,) should be held below 
0.1. For instance, if the largest value of h under con- 
sideration is 25, then o¢ must be less than 0.004 
(0"4%), etc. 

There are other kinds of deviations from isomor- 
phism, besides those due to changes in axial lengths; 
for instance, structure 0 may be rotated or distorted 
by the addition of structures M and X, without 
changing appreciably the lattice parameters of the 
crystal. Such deviations from isomorphism are almost 
impossible to detect a priori, but their importance can 
be minimized by the use of chemical sense. In any 
event, the effects of such deviations will be too small 
to spoil this phase-determination method if the change 
in hx+ky+lz  for any atom in 0 and for any index 
triple hkl is less than 0.05 between different crystals 

9. Absolute intensities 

The whole of the argument presented here depends on 
having available the correct absolute intensities of 
X-ray reflection for all members of the isomorphous 
series of crystals under study. I t  is fairly easy to put 
all members on the same relative basis by dividing the 
measured intensities by the volumes of the crystals, 
since the unit cell volume does not change* throughout 
an isomorphous series. The factor converting to the 
absolute scale can then be determined by comparing 
the calculated and observed values of FM, EX, •M'--M 
or Fx. -x ,  after the corresponding structures have 
been found. Wilson's method (Wilson, 1942) for placing 
on an absolute scale the measured intensities of the 
X-rays diffracted by a crystal frequently gives results 
in error by as much as 50 %; it is, consequently, more 
useful as an approximate check on the absolute scale, 
than as a method of determining that  scale exactly. 
On the other hand, Wilson's method should work very 
well for placing the various members of an isomorphous 
series on the same relative scale, since the general 
structure of the crystals is here always the same, and 
the errors in this method are due to peculiarities of the 
structure. 

10. Application to protein crystals  

I t  has been found recently (King, Magdoff, Adelman 
& Harker, to be published) that  crystals of several 
proteins react with solutions containing large organic 
dye molecules in such a way that  these attach them- 
selves to the protein molecules in definite positions, 
but without distorting appreciably the unit cells of 
the protein crystals. These dye molecules can be made 
to contain various arrangements of heavy atoms and 
so can, by themselves, furnish both structures M 
and X. This is a particularly convenient way of form- 
ing these structures, sin'ce it can be known a priori, 
on stereo-chemical grounds, how M and X are related 
to one another in space and also, if they are asym- 
metrical, how corresponding enantiomorphs of each 
should be chosen. 

I t  is probable that  other ways can be found of 
relating structures M and X, on the basis of a priori 
knowledge, which would be applicable to the solution 
of the structures of other non-centrosymmetrical 
crystal structures. 

I t  iS a pleasure to thank all of the author's colleagues 
in the Protein Structure Project for their comments, 
criticisms and suggestions, all of which have served to 
improve this work. I t  iS also a pleasing duty to thank 

* If the lattice constants change by such amounts as are 
allowed by the considerations of the previous paragraph, the 
change in cell volume is still completely unimportant. 
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the following organizations for their continued support 
of the work of the Project: The Dean Langmuir  
Foundation, The Rockefeller Foundation, The Damon 
Runyon Memorial Fund,  The New York Foundation, 
The International  Business Machines Corporation, The 
Polytechnic Insti tute of Brooklyn. 
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The patterns formed by electrical breakdown paths provide a new way to investigate the point- 
group symmetry of transparent crystals because the paths lie along equivalent directions. A point- 
group is uniquely deternfined from the observation in a single-crystal slice of non-degenerate break- 
down configurations. Such non-degenerate configurations are formed in most monoclinic and in all 
triclinic crystals, while most crystals of higher symmetry reveal degenerate configurations which 
are compatible with more than one point group. Degeneracy, however, is not an inherent property 
of the breakdown process and might be removed by suitable techniques. Since the paths are believed 
to be formed by electron avalanches, the symmetry shown by the breakdown pattern probably 
refers to the symmetry of the electrical fields within the crystal that influence the motion of elec- 
trons. The symmetry of the breakdown pattern is usually identical with the symmetry of the crystal 
determined by other methods. A new test for the lack of centrosymmetry in transparent crystals is 
described. 

Introduction 
This paper introduces the study of the patterns formed 
by electrical breakdown paths as a new aid to the 
determination of the point-group symmetry  of trans- 
parent crystals. Each crystal shows an overall break- 
down pattern that  conforms with one or more point- 
group symmetries. Individual  breakdown patterns, 
consisting of paths that  lie along equivalent directions 
of the crystal, are called here breakdown con:figura- 
tions. Each configuration conforms with the symmetry  
of the overall pattern, but may  differ from other con- 
figurations in orientation and in number  of paths. 
Since the paths are believed to be formed by electron 
avalanches, the symmetry  revealed by the pattern is 
probably the symmetry  of the electrical fields within 
the crystal that  influence the motion of electrons. 
Although, for crystals of high symmetry,  the method 
suffers from the same limitations that  are encountered 
in morphological studies, in that  'special forms' (here 
called degenerate configurations*) tend to develop, it is 

* A degenerate electrical breakdown path configuration is 
one that consists of paths that lie in planes or along axes 
that could be symmetry operators. When the paths are in such 
positions it is not possible to determine whether or not the 
planes or axes are symmetry operators for the breakdown 
process. Hence degenerate configurations are compatible with 

sometimes possible to obtain less degenerate configura- 
tions, or non-degenerate configurations, by changing 
the conditions of breakdown, such as by  changing the 
temperature of the crystal or by applying overvoltages. 
While the degeneracy is seldom completely removed, 
the partial  information that  is obtained is usually 
sufficient to show that  certain point groups are in- 
compatible with the pattern. The incompatible groups 
may  have higher or lower symmetries than the true 
symmetry  of the crystal for the breakdown process, 
depending upon the nature of the degeneracy. If one 
then gains knowledge by some other means of the 
existence of those symmetry  elements which are not 
established by the degenerate configuration, or, if one 
obtains a non-degenerate breakdown configuration, a 
point-group symmetry  is uniquely determined. Since 
the breakdown pattern lies in three dimensions, its full 
symmetry  is revealed in a single-crystal section or 
slice. Thus euhedral crystals are not necessary for the 
symmetry  determination. 

The point-group symmetry  is most simply deter- 
mined by examining the breakdown configurations in 

two or more point-group symmetries. When all configurations 
are degenerate the overall pattern is degenerate and the 
point-group symmetry of the crystal for the breakdown process 
is not established. 


